Multifrontal multithreaded rank-revealing sparse QR factorization

نویسندگان

  • TIMOTHY A. DAVIS
  • T. A. Davis
چکیده

SuiteSparseQR is a sparse QR factorization package based on the multifrontal method. Within each frontal matrix, LAPACK and the multithreaded BLAS enable the method to obtain high performance on multicore architectures. Parallelism across different frontal matrices is handled with Intel’s Threading Building Blocks library. The symbolic analysis and ordering phase preeliminates singletons by permuting the input matrix into the form [R11 R12 ; 0A22] where R11 is upper triangular with diagonal entries above a given tolerance. Next, the fill-reducing ordering, column elimination tree, and frontal matrix structures are found without requiring the formation of the pattern of A A. Rank-detection is performed within each frontal matrix using Heath’s method, which does not require column pivoting. The resulting sparse QR factorization obtains a substantial fraction of the theoretical peak performance of a multicore computer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifrontral multithreaded rank-revealing sparse QR factorization

SuiteSparseQR is a sparse multifrontal QR factorization algorithm. Dense matrix methods within each frontal matrix enable the method to obtain high performance on multicore architectures. Parallelism across different frontal matrices is handled with Intel’s Threading Building Blocks library. Rank-detection is performed within each frontal matrix using Heath’s method, which does not require colu...

متن کامل

Mathematics and Engineering Analysis Technical Report Boeing Information and Support Services Mea-tr-193-revised Sparse Multifrontal Rank Revealing Qr Factorization Sparse Multifrontal Rank Revealing Qr Factorization

We describe an algorithm to compute a rank revealing sparse QR factorization. We augment a basic sparse multifrontal QR factoriza-tion with an incremental condition estimator to provide an estimate of the least singular value and vector for each successive column of R. We remove a column from R as soon as the condition estimate exceeds a tolerance, using the approximate singular vector to selec...

متن کامل

Efficient Scalable Algorithms for Hierarchically Semiseparable Matrices

Hierarchically semiseparable (HSS) matrix algorithms are emerging techniques in constructing the superfast direct solvers for both dense and sparse linear systems. Here, we develope a set of novel parallel algorithms for the key HSS operations that are used for solving large linear systems. These include the parallel rank-revealing QR factorization, the HSS constructions with hierarchical compr...

متن کامل

Finding Good Column Orderings for Sparse QR Factorization

For sparse QR factorization, nding a good column ordering of the matrix to be factorized, is essential. Both the amount of ll in the resulting factors, and the number of oating-point operations required by the factorization, are highly dependent on this ordering. A suitable column ordering of the matrix A is usually obtained by minimum degree analysis on A T A. The objective of this analysis is...

متن کامل

Algorithm 9xx: Sparse QR Factorization on the GPU

Sparse matrix factorization involves a mix of regular and irregular computation, which is a particular challenge when trying to obtain high-performance on the highly parallel general-purpose computing cores available on graphics processing units (GPUs). We present a sparse multifrontal QR factorization method that meets this challenge, and is up to eleven times faster than a highly optimized me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008